Predictability of a CD4 Count

When an AIDS doctor declares that a patient with a CD4 count is “severely immune-suppressed” he is making a prediction based on the CD4 count with near certainty. When a doctor proclaims that an HIV positive person’s CD4 count of 200 or 350 or 500 shows that it is “time to start drugs” they are also making a prediction on the basis of a CD4 count, a prediction with implied certainty. Perhaps, if pressed, the doctor might admit that there are some people with low CD4 counts who are not sick, but the basic message is that CD4 counts have been shown, scientifically, to be highly accurate indicators of your stage of “progression to AIDS” – from asymptomatic to pre-AIDS (“AIDS-related complex”) to full-blown AIDS and then death.

But, what is the evidence that CD4 counts are associated with stage of immune suppression? And, how accurate would a prediction that a certain CD4 count indicates that a person is at a particular stage of HIV or AIDS be?

Predictions Based on CD4 Counts

The World Health Organization states that HIV-positive people with no symptoms or minor symptoms should start AIDS drugs when their CD4 count drops below 200 (cells/µL) and those with serious symptoms that don’t yet quality as AIDS should start with CD4 counts under 350 (Guidelines for HIV diagnosis and monitoring of antiretroviral therapy. WHO Regional Office for South-East Asia. 2009).

The US Department of Health and Human Services recommended, in 2001, that every HIV-positive person with a CD4 count below 200 should take AIDS drugs, even if they were in perfect health (Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. US Dept. of Health and Human Services. 2001 Feb 5). In 2008 they added an admittedly weaker recommendation that everyone with CD4 counts below 350 should also take AIDS drugs (again, regardless of current health) (Guidelines for the Use of Antiretroviral agents in HIV-1-infected adults and adolescents. DHHS. 2008 Nov 3). In 2012 they added another recommendation, that they admitted was based solely on opinion, not data, to take AIDS drugs no matter what CD4 count the patient had (Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. NIH. 2012 Apr 12).

Normal Use of the Normal Distribution

I apologize, but we must talk about some basic statistical concepts…

Normally, in medicine, the normal distribution (or ‘Bell Curve’) is used to decide if two groups are different, statistically speaking. In a simple medical example a clinical trial could be run to compare blood pressure in a group of people taking a drug versus a group
taking a placebo or another drug. There will be variation, not everyone's initial situation and reaction to the drug will be the same, so the blood pressures will form two bell curves that will probably overlap quite a bit. The question that can be asked is whether the two bell curves are statistically different. If they are then it can be concluded that the drug worked. Technically the question that is asked is whether the two averages (approximate centers of the curves known as means) are statistically different (with a certain assurance or probability, usually 95% or 99%).

Let’s take an artificial example, a drug manufacturer’s dream, a trial of placebo (blue), old drug (red) and new drug (green). The height of the curves represents the relative portion of patients with each measured value of an important parameter that goes from left (bad) to right (good) across the bottom. Your eye can see, and statistics would verify, that the red and blue curves are not distinctly different (i.e. the old drug is not very effective) but that the green curve is distinctly different (i.e. the new drug works).

Normal distributions are characterized by two parameters: the value of the data at their peak (known as the average or mean and having the values 20, 30 and 50 for these three curves) and also by a measure of their wideness, known as the standard deviation. A perfect normal distribution will have about 68% of the data within (i.e. plus or minus) one standard deviation of the mean, about 95% within two standard deviations and over 99% within three standard deviations. A normal distribution with a large standard deviation indicates a population with more variability.
In the example above, the green (new drug) curve has the smallest standard deviation and therefore the most predictive value. If the experimental results held in the real world, the new drug would produce values of the measured parameter between 40 and 60 in a large majority of people, a narrower range than found in the people not taking anything (placebo) or the old drug.

Normal Distributions and CD4 Counts

The practice of using CD4 counts to determine what stage of AIDS someone is at (e.g. in the United States a CD4 count under 200 is considered AIDS even if no AIDS-defining illnesses are present) and to determine when to start drugs implicitly contains an assumption that a CD4 is an accurate indicator of disease stage.

Considering the graph above, what if, instead of giving people drugs or placebo and monitoring for some lab number, you took that lab number and tried to predict whether they were taking the drug or not? A reading of 20 would indicate that someone was not likely in the green group, but could be in either the red or blue group. A reading of 50 would imply a very high probability that someone was in the green group but a reading of 40 would have a very high level of uncertainty about which group they were in. This doesn’t seem very useful unless we are trying to determine if someone is really taking the drug they were prescribed, but what if the three curves indicated disease stages and we wanted to use the current value (20, 40, 50 etc.) to determine how sick someone was?

For example, what if the curves represented CD4 counts of people at different stages of HIV infection?

What would the predictive power of a CD4 count be if we wanted to guess which stage of “HIV disease” someone was in (HIV-negative, recently infected, HIV-positive asymptomatic, AIDS) like ‘real’ AIDS doctors do routinely? If we had an estimate of the normal distributions for these stages the mathematics would actually be quite simple — we would just take the height of any one normal distribution curve at any point and divide it by the height of all the curves at the same point to estimate the probability.

As an example, with the curve above, if the heights of blue, red and green for the value of 20 are 0.08, 0.06 and 0.001 the probability of someone with a reading of 20 being in the blue group is 57%, the probability of red is 43%, and the probability of being in the green group is less than 1%. Since the heights for a value of 40 are 0.001, .003 and .005, the probabilities of blue, red and green are 11%, 33% and 56%. Clearly, with a value of 40 it is impossible to guess which group this person is in.

Similar data on CD4 counts is surprisingly hard to obtain. I have shown in two previous analyses that most published graphs on CD4 counts are imaginary, mostly derived from the feverish mind of Anthony Fauci:

But one paper does appear to show a time series, a series that we will examine in detail.
Real Data

A paper from 1989 (Lang W et al. Patterns of T lymphocyte changes with human immunodeficiency virus infection: from seroconversion to the development of AIDS. J Acquir Immune Defic Syndr. 1989; 2(1): 63–9) is the only one that I know of that not only show CD4 counts, but CD4 counts over time and stage of “HIV disease”. It certainly has its problems, among them:

- The use of Standard Error of the Mean (SEM) underestimates the variation in the data by a large factor.
- The different groups of measurements were from three different groups of people.

But, putting the limitations aside, here is the data that was presented.

One of the advantages of this paper is that from the graph, the two parameters of the normal distribution, mean and standard deviation, can be calculated. The mean is simply the height of the short horizontal line in the middle of each datum and the standard deviation is the SEM multiplied by the square root of the sample size (“Number of Participants”, conveniently provided). This means that every point in time provides its own normal distribution.
When we convert the SEM to the actual 95% confidence interval for the data (an estimate that 95% of the data is within the shown line) you can start to see the problem with trying to predict HIV/AIDS stage from the CD4 count:

But, even so, it would appear that a CD4 count of 200 would rule out someone being a recent HIV seroconverter since none of the 95% confidence intervals stretch that far.

Here is the question we should ask: Given a specific CD4 count, what is the probability that the person is a recent HIV seroconverter, AIDS-free long-term seropositive, a recently diagnosed AIDS patient or HIV-negative (the paper also provides some reference data not shown on this graph)? Our technique will be to estimate the fraction of the probability provided by each normal distribution (starting with the HIV-negative data, 3 months before seroconversion, and so on up to 1 month after AIDS diagnosis) and then sum them for each of the four groups. We will look at the probability for a CD4 count of 200 (automatic “AIDS” in the United States), 350 (another common point below which therapy is started), 500 (taken to be the bottom of the normal range) and 1000 (well into the normal range).
What we get is the following:

<table>
<thead>
<tr>
<th>Probability</th>
<th>CD4 count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>HIV-negative</td>
<td>8%</td>
</tr>
<tr>
<td>Seroconverter</td>
<td>24%</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>34%</td>
</tr>
<tr>
<td>AIDS</td>
<td>34%</td>
</tr>
</tbody>
</table>

Note: A spreadsheet with the calculations is available as an [Excel](#) or [PDF](#) file.

What this means is that even with a very low CD4 count our ability to predict disease stage is poor. That is, if someone has a CD4 count of 200, they might be a recent seroconverter, a long-term asymptomatic or an AIDS. And even the 8% probability that they are HIV-negative is not insignificant.

If a perfectly healthy person has a false positive HIV-test (assuming that there is such a thing as a true positive) the data in this study (average CD4 count of 1080 with standard deviation of 480 derived from SEM of 20 with sample size of 577) shows that approximately 11% of these people would have a CD4 count below 500 (and might be put on AIDS drugs) and 3.4% would have a CD4 count below 200 (and would certainly be put on AIDS drugs). If these results hold for the general population and all 300 million HIV-negative people in the US were tested it would be concluded that about 33 million were “immune suppressed” and about 10 million would be called “severely immune-suppressed”.

What this Means

This simple statistical analysis shows that CD4 counts are useless at determining what disease stage someone is at – unable to distinguish between those recently diagnosed with no symptoms and those with actual AIDS. It is therefore absurd for AIDS doctors to hold these counts in such esteem that, in the absence of any evidence of opportunistic infections (clinical immune suppression), they talk about people with HIV-positive people with CD4 counts below 200 as “severely immune-suppressed” and use the counts to coerce people to start toxic antiretroviral therapy.